2023届江西省南昌市高中名校高考数学押题试卷(含解析)

2023-07-07 18:03 

2023年高考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知实数、满足约束条件,则的最大值为( )
A. B. C. D.
2.已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是( )
A. B. C. D.
3.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于( )
A.16 B.17 C.18 D.19
4.已知函数,以下结论正确的个数为( )
①当时,函数的图象的对称中心为;
②当时,函数在上为单调递减函数;
③若函数在上不单调,则;
④当时,在上的最大值为1.
A.1 B.2 C.3 D.4
5.函数的图象大致为( )
A. B.
C. D.
6.某学校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30],样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )
A.56 B.60 C.140 D.120
7.设全集集合,则( )
A. B. C. D.
8.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( )
A. B. C. D.
9.已知双曲线C:()的左、右焦点分别为,过的直线l与双曲线C的左支交于A、B两点.若,则双曲线C的渐近线方程为( )
A. B. C. D.
10.已知函数,若方程恰有两个不同实根,则正数m的取值范围为( )
A. B.
C. D.
11.设复数满足,在复平面内对应的点为,则不可能为( )
A. B. C. D.
12.在中,,则=( )
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.已知数列满足:点在直线上,若使、、构成等比数列,则______
14. “学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现已日益成为老百姓了解国家动态,紧跟时代脉搏的热门app.该款软件主要设有“阅读文章”和“视听学习”两个学习板块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题板块.某人在学习过程中,将六大板块依次各完成一次,则“阅读文章”与“视听学习”两大学习板块之间最多间隔一个答题板块的学习方法有________种.
15.已知,则__________.
16.已知,,是平面向量,是单位向量.若,,且,则的取值范围是________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)已知抛物线的焦点为,点在抛物线上,,直线过点,且与抛物线交于,两点.
(1)求抛物线的方程及点的坐标;
(2)求的最大值.
18.(12分)已知函数,.
(1)求曲线在点处的切线方程;
(2)求函数的极小值;
(3)求函数的零点个数.
19.(12分)已知在中,角的对边分别为,且.
(1)求的值;
(2)若,求的取值范围.
20.(12分)已知函数.
(1)若,求函数的单调区间;
(2)若恒成立,求实数的取值范围.
21.(12分)如图,在四棱锥中,,,,和均为边长为的等边三角形.
(1)求证:平面平面;
(2)求二面角的余弦值.
22.(10分)在直角坐标系中,直线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的普通方程和的直角坐标方程;
(2)把曲线向下平移个单位,然后各点横坐标变为原来的倍得到曲线(纵坐标不变),设点是曲线上的一个动点,求它到直线的距离的最小值.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【解析】
作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点时,取得最大值.
【详解】
解:作出约束条件表示的可行域是以为顶点的三角形及其内部,如下图表示:
当目标函数经过点时,取得最大值,最大值为.
故选:C.
【点睛】
本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.
2、B
【解析】
由可得;由过点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.
【详解】
,所以离心率,
又圆是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,
而焦点到双曲线渐近线的距离为,所以,即,
所以,所以双曲线的离心率的取值范围是.
故选:B
【点睛】
本题考查双曲线的离心率的范围,考查双曲线的性质的应用.
3、B
【解析】
由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,代入四个选项进行验证即可.
【详解】
解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.
若输出 ,则不符合题意,排除;
若输出,则,符合题意.
故选:B.
【点睛】
本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.
4、C
【解析】
逐一分析选项,①根据函数的对称中心判断;②利用导数判断函数的单调性;③先求函数的导数,若满足条件,则极值点必在区间;④利用导数求函数在给定区间的最值.
【详解】
①为奇函数,其图象的对称中心为原点,根据平移知识,函数的图象的对称中心为,正确.
②由题意知.因为当时,,
又,所以在上恒成立,所以函数在上为单调递减函数,正确.
③由题意知,当时,,此时在上为增函数,不合题意,故.
令,解得.因为在上不单调,所以在上有解,
需,解得,正确.
④令,得.根据函数的单调性,在上的最大值只可能为或.
因为,,所以最大值为64,结论错误.
故选:C
【点睛】
本题考查利用导数研究函数的单调性,极值,最值,意在考查基本的判断方法,属于基础题型.
5、A
【解析】
确定函数在定义域内的单调性,计算时的函数值可排除三个选项.
【详解】
时,函数为减函数,排除B,时,函数也是减函数,排除D,又时,,排除C,只有A可满足.
故选:A.
【点睛】
本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.
6、C
【解析】
试题分析:由题意得,自习时间不少于小时的频率为,故自习时间不少于小时的频率为,故选C.
考点:频率分布直方图及其应用.
7、A
【解析】
先求出,再与集合N求交集.
【详解】
由已知,,又,所以.
故选:A.
【点睛】
本题考查集合的基本运算,涉及到补集、交集运算,是一道容易题.
8、C
【解析】
分情况讨论,由间接法得到“数”必须排在前两节,“礼”和“乐”必须分开的事件个数,不考虑限制因素,总数有种,进而得到结果.
【详解】
当“数”位于第一位时,礼和乐相邻有4种情况,礼和乐顺序有2种,其它剩下的有种情况,由间接法得到满足条件的情况有
当“数”在第二位时,礼和乐相邻有3种情况,礼和乐顺序有2种,其它剩下的有种,
由间接法得到满足条件的情况有
共有:种情况,不考虑限制因素,总数有种,
故满足条件的事件的概率为:
故答案为:C.
【点睛】
解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).
9、D
【解析】
设,利用余弦定理,结合双曲线的定义进行求解即可.
【详解】
设,由双曲线的定义可知:因此再由双曲线的定义可知:,在三角形中,由余弦定理可知:
,因此双曲线的渐近线方程为:
.
故选:D
【点睛】
本题考查了双曲线的定义的应用,考查了余弦定理的应用,考查了双曲线的渐近线方程,考查了数学运算能力.
10、D
【解析】
当时,函数周期为,画出函数图像,如图所示,方程两个不同实根,即函数和有图像两个交点,计算,,根据图像得到答案.
【详解】
当时,,故函数周期为,画出函数图像,如图所示:
方程,即,即函数和有两个交点.
,,故,,,,.
根据图像知:.
故选:.
【点睛】
本题考查了函数的零点问题,确定函数周期画出函数图像是解题的关键.
11、D
【解析】
依题意,设,由,得,再一一验证.
【详解】
设,
因为,
所以,
经验证不满足,
故选:D.
【点睛】
本题主要考查了复数的概念、复数的几何意义,还考查了推理论证能力,属于基础题.
12、B
【解析】
在上分别取点,使得,
可知为平行四边形,从而可得到,即可得到答案.
【详解】
如下图,,在上分别取点,使得,
则为平行四边形,故,故答案为B.
【点睛】
本题考查了平面向量的线性运算,考查了学生逻辑推理能力,属于基础题.
二、填空题:本题共4小题,每小题5分,共20分。
13、13
【解析】
根据点在直线上可求得,由等比中项的定义可构造方程求得结果.
【详解】
在上,,
成等比数列,,即,解得:.
故答案为:.
【点睛】
本题考查根据三项成等比数列求解参数值的问题,涉及到等比中项的应用,属于基础题.
14、
【解析】
先分间隔一个与不间隔分类计数,再根据捆绑法求排列数,最后求和得结果.
【详解】
若“阅读文章”与“视听学习”两大学习板块相邻,则学习方法有种;
若“阅读文章”与“视听学习”两大学习板块之间间隔一个答题板块的学习方法有种;
因此共有种.
故答案为:
【点睛】
本题考查排列组合实际问题,考查基本分析求解能力,属基础题.
15、
【解析】
解:由题意可知: .
16、
【解析】
先由题意设向量的坐标,再结合平面向量数量积的运算及不等式可得解.
【详解】
由是单位向量.若,,
设,
则,,
又,
则,
则,
则,
又,
所以,(当或时取等)
即的取值范围是,,
故答案为:,.
【点睛】
本题考查了平面向量数量积的坐标运算,意在考查学生对这些知识的理解掌握水平.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17、(1),;(2)1.
【解析】
(1)根据抛物线上的点到焦点和准线的距离相等,可得p值,即可求抛物线C的方程从而可得解;
(2)设直线l的方程为:x+my﹣1=0,代入y2=4x,得,y2+4my﹣4=0,设A(x1,y1),B(x2,y2),则y1+y2=﹣4m,y1y2=﹣4,x1+x2=2+4m2,x1x2=1,(),(x2﹣2,),由此能求出的最大值.
【详解】
(1)∵点F是抛物线y2=2px(p>0)的焦点,P(2,y0)是抛物线上一点,|PF|=3,
∴23,
解得:p=2,
∴抛物线C的方程为y2=4x,
∵点P(2,n)(n>0)在抛物线C上,
∴n2=4×2=8,
由n>0,得n=2,∴P(2,2).
(2)∵F(1,0),∴设直线l的方程为:x+my﹣1=0,
代入y2=4x,整理得,y2+4my﹣4=0
设A(x1,y1),B(x2,y2),
则y1,y2是y2+4my﹣4=0的两个不同实根,
∴y1+y2=﹣4m,y1y2=﹣4,
x1+x2=(1﹣my1)+(1﹣my2)=2﹣m(y1+y2)=2+4m2,
x1x2=(1﹣my1)(1﹣my2)=1﹣m(y1+y2)+m2y1y2=1+4m2﹣4m2=1,
(),(x2﹣2,),
(x1﹣2)(x2﹣2)+()()
=x1x2﹣2(x1+x2)+4
=1﹣4﹣8m2+4﹣4+8m+8
=﹣8m2+8m+5
=﹣8(m)2+1.
∴当m时,取最大值1.
【点睛】
本题考查抛物线方程的求法,考查向量的数量积的最大值的求法,考查抛物线、直线方程、韦达定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.
18、(1);(2)极小值;(3)函数的零点个数为.
【解析】
(1)求出和的值,利用点斜式可得出所求切线的方程;
(2)利用导数分析函数的单调性,进而可得出该函数的极小值;
(3)由当时,以及,结合函数在区间上的单调性可得出函数的零点个数.
【详解】
(1)因为,所以.
所以,.
所以曲线在点处的切线为;
(2)因为,令,得或.
列表如下:
0
极大值 极小值
所以,函数的单调递增区间为和,单调递减区间为,
所以,当时,函数有极小值;
(3)当时,,且.
由(2)可知,函数在上单调递增,所以函数的零点个数为.
【点睛】
本题考查利用导数求函数的切线方程、极值以及利用导数研究函数的零点问题,考查分析问题和解决问题的能力,属于中等题.
19、(1)(2)
【解析】试题分析:(1)本问考查解三角形中的的“边角互化”.由于求的值,所以可以考虑到根据余弦定理将分别用边表示,再根据正弦定理可以将转化为,于是可以求出的值;(2)首先根据求出角的值,根据第(1)问得到的值,可以运用正弦定理求出外接圆半径,于是可以将转化为,又因为角的值已经得到,所以将转化为关于的正弦型函数表达式,这样就可求出取值范围;另外本问也可以在求出角的值后,应用余弦定理及重要不等式,求出的最大值,当然,此时还要注意到三角形两边之和大于第三边这一条件.
试题解析:(1)由,
应用余弦定理,可得
化简得则
(2)

所以
法一. ,

=
=
=

法二
因为 由余弦定理
得,
又因为,当且仅当时“”成立.
所以
又由三边关系定理可知
综上
考点:1.正、余弦定理;2.正弦型函数求值域;3.重要不等式的应用.
20、(1)增区间为,减区间为;(2).
【解析】
(1)将代入函数的解析式,利用导数可得出函数的单调区间;
(2)求函数的导数,分类讨论的范围,利用导数分析函数的单调性,求出函数的最值可判断是否恒成立,可得实数的取值范围.
【详解】
(1)当时,,
则,
当时,,则,此时,函数为减函数;
当时,,则,此时,函数为增函数.
所以,函数的增区间为,减区间为;
(2),则,
.
①当时,即当时,,
由,得,此时,函数为增函数;
由,得,此时,函数为减函数.
则,不合乎题意;
②当时,即时,
.
不妨设,其中,令,则或.
(i)当时,,
当时,,此时,函数为增函数;
当时,,此时,函数为减函数;
当时,,此时,函数为增函数.
此时,
而,
构造函数,,则,
所以,函数在区间上单调递增,则,
即当时,,所以,.
,符合题意;
②当时,,函数在上为增函数,
,符合题意;
③当时,同理可得函数在上单调递增,在上单调递减,在上单调递增,
此时,则,解得.
综上所述,实数的取值范围是.
【点睛】
本题考查导数知识的运用,考查函数的单调性与最值,考查恒成立问题,正确求导和分类讨论是关键,属于难题.
21、 (1)见证明;(2)
【解析】
(1) 取的中点,连接,要证平面平面,转证平面,即证, 即可;(2) 以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,分别求出平面与平面的法向量,代入公式,即可得到结果.
【详解】
(1)取的中点,连接,
因为均为边长为的等边三角形,
所以,,且
因为,所以,所以,
又因为,平面,平面,
所以平面.
又因为平面,所以平面平面.
(2)因为,为等边三角形,
所以,又因为,所以,,
在中,由正弦定理,得:,所以.
以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,
则,,,,,
设平面的法向量为,
则,即,
令,则平面的一个法向量为,
依题意,平面的一个法向量
所以
故二面角的余弦值为.
【点睛】
空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.
22、(1),;(2).
【解析】
(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以得,进而可化简得出曲线的直角坐标方程;
(2)根据变换得出的普通方程为,可设点的坐标为,利用点到直线的距离公式结合正弦函数的有界性可得出结果.
【详解】
(1)由(为参数),得,化简得,
故直线的普通方程为.
由,得,又,,.
所以的直角坐标方程为;
(2)由(1)得曲线的直角坐标方程为,向下平移个单位得到,
纵坐标不变,横坐标变为原来的倍得到曲线的方程为,
所以曲线的参数方程为(为参数).
故点到直线的距离为,
当时,最小为.
【点睛】
本题考查曲线的参数方程、极坐标方程与普通方程的相互转化,同时也考查了利用椭圆的参数方程解决点到直线的距离最值的求解,考查计算能力,属于中等题.

2023届江西省南昌市高中名校高考数学押题试卷(含解析)

本文地址:https://www.qiuzhishu.com/zhishi/166556.html
版权声明:本文为原创文章,版权归 qiuzhishu 所有,欢迎分享本文,转载请保留出处!

评论已关闭!