北京市2023年高考物理模拟题汇编-07磁场、电磁感应(有详解)

2023-04-02 12:06 

北京市2023年高考物理模拟题汇编-07磁场、电磁感应
一、单选题
1.(2023·北京丰台·统考一模)如图甲所示,某同学在研究电磁感应现象时,将一线圈两端与电流传感器相连,强磁铁从长玻璃管上端由静止下落,电流传感器记录了强磁铁穿过线圈过程中电流随时间变化的图像,时刻电流为0,如图乙所示。下列说法正确的是(  )
A.在时刻,穿过线圈的磁通量的变化率为0
B.在到时间内,强磁铁的加速度大于重力加速度
C.强磁铁穿过线圈的过程中,受到线圈的作用力先向上后向下
D.在到的时间内,强磁铁重力势能的减少量等于其动能的增加量
2.(2023·北京平谷·统考一模)摩托车和汽车上装有的磁性转速表的结构原理如图所示,转轴Ⅰ随待测物沿图示方向旋转,永久磁体同步旋转。铝盘、游丝和指针固定在转轴Ⅱ上,铝盘靠近永久磁体,当待测物以一定的转速旋转时,指针指示的转角即对应于被测物的转速。下列说法正确的是( )
A.铝盘接通电源后,通有电流的铝盘才会在磁场作用下带动指针转动
B.永久磁体转动时,铝盘中产生感应电流,感应电流使铝盘受磁场力作用而转动
C.刻度盘上的零刻度线应标在刻度盘的a端
D.若去掉游丝和指针,使转轴Ⅱ可以无阻碍地自由转动,铝盘就能同永久磁体完全同步转动
3.(2023·北京石景山·统考一模)汽车使用的电磁制动原理示意图如图所示,当导体在固定通电线圈产生的磁场中运动时,会产生涡流,使导体受到阻碍运动的制动力。下列说法正确的是(  )
A.制动过程中,导体不会发热
B.制动力的大小与导体运动的速度无关
C.改变线圈中的电流方向,导体就可获得动力
D.制动过程中导体获得的制动力逐渐减小
4.(2023·北京石景山·统考一模)如图所示平面内,在通有图示方向电流I的长直导线右侧,固定一矩形金属线框,边与导线平行。调节电流I使得空间各点的磁感应强度随时间均匀增加,则(  )
A.线框中产生的感应电流方向为
B.线框中产生的感应电流逐渐增大
C.线框边所受的安培力大小恒定
D.线框整体受到的安培力方向水平向右
5.(2023·北京丰台·统考一模)在如图所示的电路中,开关S闭合。两平行金属极板a、b间有匀强磁场,一带电粒子以速度v水平匀速穿过两极板,不计粒子重力。下列说法正确的是(  )
A.该粒子一定带正电
B.仅增大粒子的速度,粒子一定向a板偏转
C.仅将滑动变阻器的滑片P向下移动,粒子一定向b板偏转
D.仅增大粒子所带电荷量,粒子一定仍沿水平方向穿过两极板
6.(2023·北京丰台·统考一模)2023年3月,中国科学技术大学超导量子计算实验室成功实现了三维封装量子计算机原型,其主要构成材料之一为金属超导体。超导体指的是低于某一温度后电阻为零的导体,且当超导体置于外磁场中时,随着温度的降低,超导体表面能够产生一个无损耗的超导电流,这一电流产生的磁场,让磁感线被排斥到超导体之外。如图为某超导体在不同温度下两端电压和流经超导体电流的U-I特性曲线,温度分别为、、,下列说法正确的是(  )
A.当超导体处在超导状态时,两端能够测出电压
B.将超导体置于磁场中,处于超导状态时内部磁感应强度不为零
C.根据三条曲线的变化趋势,可推断
D.随着流经超导体的电流增大,超导状态将被破坏
7.(2023·北京·统考模拟预测)如图所示,有界匀强磁场的磁感应强度为B,方向垂直纸面向里,MN为其左边界,磁场中放置一半径为R圆柱形物体,其上涂有荧光物体,电子打到上面会发出荧光.圆柱形物体的圆心到边界MN的距离为.现有一束平行的电子束沿垂直于左边界MN向右射人磁场区,已知电子质量为m,电量为e.则下列分析判断正确的是( )
A.若电子初速度满足,圆柱形物体上发光的弧线长度等于
B.若电子初速度满足,圆柱形物体上发光的弧线长度等于
C.若电子初速度满足,圆柱形物体上发光的弧线长度大于
D.若电子初速度满足,圆柱形物体上将不会发光
8.(2023·北京石景山·统考一模)如图所示,完全相同的甲、乙两个环形电流同轴平行放置,甲的圆心为,乙的圆心为,在两环圆心的连线上有a、b、c三点,其中,此时a点的磁感应强度大小为,b点的磁感应强度大小为。当把环形电流甲撤去后,a点的磁感应强度大小为( )
A. B. C. D.
9.(2023·北京·模拟预测)1932年,师从密立根的中国科学家赵忠尧,在实验中最早观察到正负电子对产生与湮没,成为第一个发现正电子的科学家。此后,人们在气泡室中,观察到一对正负电子的运动轨迹,如图所示。已知匀强磁场的方向垂直照片平面向外,电子重力忽略不计,则下列说法正确的是(  )
A.右侧为负电子运动轨迹
B.正电子与负电子分离瞬间,正电子速度大于负电子速度
C.正、负电子所受洛伦兹力始终相同
D.正、负电子在气泡室运动时,动能减小、半径减小、周期不变
10.(2023·北京·模拟预测)如图所示,虚线框内存在匀强磁场,磁场方向垂直纸面向里。a、b、c是三个质量和电荷量都相等的带电粒子,它们从PQ边上的中点沿垂直于磁场的方向射入磁场,图中画出了它们在磁场中的运动轨迹。若不计粒子所受重力,则(  )
A.粒子a带负电,粒子b、c带正电 B.粒子c在磁场中运动的时间最长
C.粒子c在磁场中的加速度最大 D.粒子c在磁场中的动量最大
11.(2023·北京·模拟预测)如图所示为某种质谱仪工作原理示意图,离子从电离室中的小孔飘出(初速度不计),经电压为的加速电场加速后,通过小孔,从磁场上边界垂直于磁场方向进入磁感应强度为的匀强磁场中,运动半个圆周后打在照相底片上并被吸收形成谱线。照相底片上有刻线均匀分布的标尺(图中未画出),可以直接读出离子的比荷。下列说法正确的是(  )
A.打在照相底片上的离子带负电
B.可以通过减小磁感应强度来增大不同离子形成谱线之间的间隔
C.谱线对应比荷的值大于谱线对应比荷的值
D.标尺上各刻线对应比荷的值是均匀的
12.(2023·北京·模拟预测)如图甲所示是磁电式电表内部结构示意图,蹄形磁铁的两极间有一个固定的圆柱形铁芯,铁芯外面套有一个可以绕轴转动的铝框,在铝框上绕有铜线圈。电表指针固定铁芯在线圈上,可与线圈一起转动,线圈的两端分别接在两个螺旋弹簧上,被测电流经过这两个弹簧流入线圈。蹄形磁铁与铁芯间的磁场可看作是均匀辐射分布的,如图乙所示,无论线圈转到什么位置,线圈平面总与线圈所在磁场甲的方向平行。关于磁电式电表,下列说法不正确的是(  )
A.磁电式电表的原理是通电线圈在磁场中因受安培力而转动
B.改变线圈中电流的方向,指针会反向偏转
C.增加线圈的匝数可以提高电表的灵敏度
D.用塑料框代替铝框,在使用电表时可以使指针更迅速稳定在示数位置上
13.(2023·北京·模拟预测)如图所示,来自外层空间的大量带电粒子进入地磁场影响范围后,粒子将绕地磁感线做螺旋运动,形成范艾伦辐射带。螺旋运动中回转一周的时间称为周期,回转一周前进的距离称为螺距。忽略带电粒子之间以及带电粒子与空气分子之间的相互作用,带电粒子向地磁场两极运动的过程中,下列说法正确的是(  )
A.粒子运动的速率逐渐变大 B.粒子运动的周期不变
C.粒子螺旋运动的半径不变 D.粒子螺旋运动的螺距逐渐变小
14.(2023·北京·模拟预测)如图所示,固定的水平长直导线中通有向右电流I,闭合的矩形线框与导线在同一竖直平面内,且一边与导线平行.线框由静止释放,在下落过程中(  )
A.穿过线框的磁通量保持不变 B.线框所受安培力的合力为零
C.线框中产生顺时针方向的感应电流 D.线框的机械能不断增大
二、解答题
15.(2023·北京丰台·统考一模)如甲图所示,有一边长l的正方形导线框abcd,质量,电阻,由高度h处自由下落,直到其上边cd刚刚开始穿出匀强磁场为止,导线框的v-t图像如乙图所示。此匀强磁场区域宽度也是l,磁感应强度,重力加速度g取10。求:
(1)线框自由下落的高度h;
(2)导线框的边长l;
(3)某同学认为,增大磁场的磁感应强度B,保持其它条件不变,导线框速度随时间变化图像与乙图相同,你是否同意该同学的说法,请分析说明。
16.(2023·北京·统考模拟预测)如图所示,两条平行金属导轨的间距为L,长为d的倾斜部分与水平面的夹角为,水平部分足够长,两部分平滑相连,倾斜导轨下端接有一平行板电容器,电容为C。两部分导轨均处于匀强磁场中,方向垂直于导轨平面,磁感应强度大小分别为和B,在倾斜导轨下端放置一质量为m的金属棒,使其沿导轨由静止开始加速上滑,当金属棒下滑d后无动能损失进入水平轨道,然后进入竖直向下的匀强磁场。已知金属棒在滑动过程中始终与导轨垂直且接触良好,电容器能正常工作,重力加速度为g,不计所有电阻和摩擦阻力。试求:
(1)金属棒刚进入水平轨道时速度的大小;
(2)金属棒进入水平轨道后的最终速度v。
17.(2023·北京平谷·统考一模)如图所示,位于竖直平面内的矩形金属线圈,可绕过和边中点且垂直于磁场方向的轴匀速转动。已知矩形线圈边和边的长度,边和边的长度,匝数匝,线圈的总电阻。线圈的两个末端分别与两个彼此绝缘的铜环C、D(集流环)焊接在一起,并通过电刷同的定值电阻相连接。线圈所在空间存在水平向右的匀强磁场,磁感应强度。在外力驱动下线圈绕轴转动的角速度。计算中取。求:
(1)通过电阻R的电流最大值;
(2)在线圈转动一周的过程中,整个电路产生的焦耳热;
(3)线圈由图示位置(即线圈平面与磁场方向垂直的位置)转过90°的过程中,通过电阻R的电荷量。
18.(2023·北京石景山·统考一模)如图所示,宽度为L的U型导体框,水平放置在磁感应强度大小为B、方向竖直向下的匀强磁场中,左端连接一阻值为R的电阻。一质量为m、电阻为r的导体棒置于导体框上。不计导体框的电阻、导体棒与框间的摩擦,导体棒与导体框始终接触良好。在水平向右的拉力作用下,导体棒以速度匀速向右运动。
(1)求通过导体棒的电流大小I;
(2)求拉力做功的功率P;
(3)某时刻撤去拉力,经过一段时间导体棒停在导体框上,求在此过程中电阻R上产生的热量Q。
19.(2023·北京丰台·统考一模)某实验装置如图所示,在铁芯上绕着两个线圈和。如果线圈中电流与时间的关系有图所示的甲、乙、丙、丁四种情况,那么在这段时间内,哪种情况可以观察到线圈中有感应电流?
20.(2023·北京石景山·统考一模)汤姆孙用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示,真空管内的阴极K发出的电子经加速电压加速后,穿过中心的小孔沿中心线的方向进入到两块水平正对放置的平行极板P和间的区域,极板间距为d。当P和P极板间不加偏转电压时,电子束打在荧光屏的中心O点处,形成一个亮点。不计电子从阴极K发出的初速度、所受重力和电子间的相互作用,不考虑相对论效应。
(1)若测得电子穿过中心的小孔沿中心线方向匀速运动的速度,求电子的比荷;
(2)已知P和极板水平方向的长度为,它们的右端到荧光屏中心O点的水平距离为,当P和极板间加上偏转电压U后,亮点偏离到点(与O点水平距离可忽略不计)。
①小明同学认为若测出与O点的竖直距离h,就可以求出电子的比荷。请通过分析和推理判断小明的观点是否正确。
②在两极板P和间的区域再加上磁场,调节磁场的强弱和方向,通过分析电子在P和间的运动情况可求出电子的速度。请说明确定电子速度的方法。
21.(2023·北京平谷·统考一模)在原子反应堆中抽动液态金属或在医疗器械中抽动血液等导电液体时,由于不允许传动机械部分与这些液体相接触,常使用一种电磁泵。如图所示是一种液态金属电磁泵的简化结构示意图,将装有液态金属、截面为矩形的导管的一部分水平置于匀强磁场中,当电流穿过液态金属时,液态金属即被驱动。若输送液态金属的管道(用特殊陶瓷材料制成)截面长为a,宽为b(不计管道壁的厚度),正、负电极板镶嵌在管道两侧(两极板正对且与管内液态金属良好接触),电极板长为c,宽为b;正、负电极板间的液态金属恰好处在磁场区域内,该磁场的磁感应强度为B,方向与导管上、下表面垂直;通过两电极板间液态金属的电流为I;液态金属在磁场驱动力的作用下,在导管中以恒定的速率v流动。已知液态金属的电阻率为。
(1)导管截面上由磁场驱动力所形成的附加压强是多大?
(2)在时间内,电流通过两电极板间液态金属所消耗的电能是多少?
(3)推动液态金属的驱动力实际上是通电金属液柱在磁场中受到的安培力,安培力推动液态金属做功,使电能转化为机械能。我们知道,导体中的运动电荷受到的洛仑兹力在宏观上表现为安培力,而洛伦兹力对运动电荷是不做功的,但是推动液态金属的安培力却做功了,这是为什么?请你对此做出合理的解释(为了方便,可假设液态金属中的自由电荷为正电荷)。
22.(2023·北京·模拟预测)如图所示,P、Q两平行金属板间存在着平行于纸面的匀强电场和垂直纸面向外的匀强磁场,两板间的距离为d,电势差为U;金属板下方存在一有水平边界、方向垂直纸面向外的匀强磁场,磁感应强度为。电荷量为q的带正电的粒子a,以速度v垂直于电场和磁场匀速通过P、Q两金属板间,并沿垂直磁场方向进入金属板下方的磁场,粒子a沿虚线做半径为R的匀速圆周运动,打到左侧金属板M上。不计两极板电场的边缘效应及粒子所受的重力。求:
(1)P、Q两金属板间匀强磁场磁感应强度的大小;
(2)粒子的质量m;
(3)若另外一个带正电粒子b以相同的速度垂直于电场和磁场匀速通过P、Q两金属板间,最终打到金属板上的位置比粒子a靠左侧,请通过计算说明哪个粒子的比荷()大。
23.(2023·北京·模拟预测)如图所示,在xOy坐标系第一象限的矩形区域内存在垂直于纸面的匀强磁场。一带正电的粒子在M点以垂直于y轴的方向射入磁场,并从另一侧边界的N点射出。已知带电粒子质量为m,电荷量为q,入射速度为v,矩形区域的长度为L,MN沿y轴方向上的距离为。不计重力。
(1)画出带电粒子在磁场区域内运动的轨迹,并求轨迹的半径r;
(2)判断磁场的方向,并求磁场的磁感应强度的大小B;
(3)将矩形区域内的磁场换为平行于y轴方向的匀强电场,使该粒子以相同的速度从M点入射后仍能从N点射出。通过计算说明,该粒子由N点射出磁场和电场时的速度方向是否相同。
24.(2023·北京·模拟预测)某种质谱仪由离子源、加速电场、静电分析器、磁分析器、收集器几部分构成,如图所示。加速电场的电压为U;静电分析器中有沿半径方向的电场,通道中心线MN是半径为R的圆弧;磁分析器中分布着方向垂直于纸面的匀强磁场,其左边界与静电分析器的右边界平行。由离子源发出一个质量为m、电荷量为q的正离子(初速度为零,重力不计),经加速电场加速后进入静电分析器,沿中心线MN做匀速圆周运动,而后由P点垂直于磁分析器的左边界进入磁分析器中,经过四分之一圆周从Q点射出,并进入收集器。已知Q点与磁分析器左边界的距离为d。求:
(1)离子离开加速电场时的速度v的大小;
(2)静电分析器中MN处电场强度E的大小;
(3)磁分析器中磁场的磁感应强度B的大小和方向。
25.(2023·北京·模拟预测)在再现汤姆孙测阴极射线比荷的实验中,采用了如图所示的阴极射线管,从C出来的阴极射线经过A、B间的电场加速后,水平射入长度为L的D、G平行板间,接着在荧光屏F中心出现光斑。若在D、G间加上方向向上、场强为E的匀强电场,阴极射线将向下偏转;如果再利用通电线圈在D、G电场区加上一垂直纸面的磁感应强度为B的匀强磁场(图中未画出),荧光斑恰好回到荧光屏中心,接着再去掉电场,阴极射线向上偏转,偏转角为θ,试解决下列问题:
(1)说明阴极射线的电性;
(2)说明图中磁场沿什么方向;
(3)根据L、E、B和θ,求出阴极射线的比荷。
26.(2023·北京·模拟预测)利用霍尔效应制作的霍尔元件以及传感器,广泛应用于测量和自动控制等领域。如图所示,将一金属或半导体薄片垂直置于磁场B中,在薄片的两个侧面a、b间通以电流I时,另外两侧c、f间会产生电势差,这一现象称为霍尔效应。其原因是薄片中的移动电荷受洛伦兹力的作用向一侧偏转和积累,于是c、f间建立起电场,同时产生霍尔电势差。当电荷所受的电场力与洛伦兹力处处相等时,和达到稳定值,的大小与I和B以及霍尔元件厚度d之间满足关系式,其中比例系数称为霍尔系数,仅与材料性质有关
(1)设半导体薄片的宽度(c、f间距)为l,请写出和的关系式;若半导体材料是由电子导电的,请判断图中c、f哪端的电势高;
(2)已知半导体薄片内单位体积中导电的电子数为n,电子的电荷量为e,请推导出霍尔系数的表达式;(通过横截面积S的电流,其中v是导电电子定向移动的平均速率)
(3)图一是霍尔测速仪的示意图,将非磁性圆盘固定在转轴上,圆盘的周边等距离地嵌装着m个永磁体,相邻永磁体的极性相反。霍尔元件置于被测圆盘的边缘附近。当圆盘匀速转动时,霍尔元件输出的电压脉冲信号图像如图二所示:
①若在时间t内,霍尔元件输出的脉冲数目为P,请导出圆盘转速N的表达式;
②利用霍尔测速仪可以测量汽车行驶的里程.除此之外,请你展开“智慧的翅膀”,提出另一个实例或设想。
27.(2023·北京·模拟预测)如图1所示为汽车在足够长水平路面上以恒定功率P启动的模型,假设汽车启动过程中所受阻力f恒定,汽车质量为M;如图2所示为一足够长的水平的光滑平行金属导轨,导轨间距为L,左端接有定值电阻R,导轨处在垂直于导轨平面向上的匀强磁场中,磁感应强度大小为B,将一质量为m的导体棒垂直搁在导轨上并用水平恒力F向右拉动,导体棒和导轨的电阻不计且两者始终接触良好。图3、图4分别是汽车、导体棒开始运动后的v t图像,图3和图4中的t1和t2已知。
(1)请分别求汽车和导体棒在运动过程中的最大速度和;
(2)请求出汽车从启动到速度达到最大所运动的距离x1;
(3)求出导体棒从开始运动到速度达到最大所运动的距离x2
28.(2023·北京·模拟预测)如图所示,水平固定、间距为的平行金属导轨处于竖直向上的匀强磁场中,磁感应强度的大小为。导轨上有、两根与导轨接触良好的导体棒,质量均为,电阻均为。现对施加水平向右的恒力,使其由静止开始向右运动。当向右的位移为时,的速度达到最大且刚要滑动。已知两棒与导轨间的动摩擦因数均为,设最大静摩擦力等于滑动摩擦力,不计导轨电阻,重力加速度为。
(1)导体棒刚要滑动时,回路中的电流;
(2)定性画出导体棒所受摩擦力大小随时间变化的图像;
(3)导体棒发生位移的过程中,回路中产生的总焦耳热;
(4)当导体棒达到最大速度时,给一水平向右的瞬时速度()。请分析此后导体棒的运动情况并求出的最终速度。
参考答案:
1.A
【详解】A.时刻电流为0,说明感应电动势为零,由 可知穿过线圈的磁通量的变化率为0,故A正确;
B.由“来拒去留”可知在到时间内,强磁铁受到线圈向上的作用力F,且初始阶段有F小于重力,由
可知初始阶段强磁铁的加速度小于重力加速度,故B错误;
C.由“来拒去留”可知强磁铁穿过线圈的过程中,受到线圈的作用力始终向上,故C错误;
D.在到的时间内,强磁铁重力势能的减少量等于其动能的增加量加上线圈的内能,故D错误。
故选A。
2.B
【详解】AB.当永久磁体随转轴转动时,产生转动的磁场,在铝盘中会产生感应电流,这时永久磁体会对铝盘上的感应电流有力的作用,从而产生一个转动的力矩,由于弹簧游丝的反力矩,会使指针稳定指在某一刻度上,A错误,B正确;
C.刻度盘上的零刻度线应标在刻度盘的中央,C错误;
D.若去掉游丝和指针,使转轴Ⅱ可以无阻碍地自由转动,永久磁体固定在转轴Ⅰ上,铝盘固定在转轴Ⅱ上,由楞次定律知,铝盘不能同永久磁体完全同步转动,转速低于磁体,D错误。
故选B。
3.D
【详解】A.由于导体中产生了涡流,根据
可知,制动过程中,导体会发热,A错误;
B.导体运动速度越大,穿过导体中回路的磁通量的变化率越大,产生的涡流越大,则所受安培力,即制动力越大,即制动力的大小与导体运动的速度有关,B错误;
C.根据楞次定律,可知,原磁场对涡流的安培力总是要阻碍导体的相对运动,即改变线圈中的电流方向,导体受到的安培力仍然为阻力,C错误;
D.制动过程中,导体的速度逐渐减小,穿过导体中回路的磁通量的变化率变小,产生的涡流变小,则所受安培力,即制动力变小,D正确。
故选D。
4.D
【详解】A.根据安培定则可知,通电直导线右侧的磁场方向垂直于纸面向里,磁感应强度随时间均匀增加,根据楞次定律可知线框中产生的感应电流方向为,A错误;
B.线框中产生的感应电流为
空间各点的磁感应强度随时间均匀增加,故线框中产生的感应电流不变,B错误;
C.线框边感应电流保持不变,磁感应强度随时间均匀增加,根据安培力表达式,故所受的安培力变大,C错误;
D.线框所处空间的磁场方向垂直纸面向里,线框中产生的感应电流方向为,根据左手定则可知,线框边所受的安培力水平向右,线框边所受的安培力水平向左。通电直导线的磁场分部特点可知边所处的磁场较大,根据安培力表达式可知,线框整体受到的安培力方向水平向右,D正确。
故选D。
5.D
【详解】A.两极板间电场方向向下,若正电荷粒子所受电场力向下,洛伦兹力向上;若负电荷粒子所受电场力向上,洛伦兹力向下,则无论正负电荷都可以匀速穿过两极板,A错误;
B.根据左手定则判断知,带正电的粒子受到的洛伦兹力竖直向上,电场力竖直向下,粒子沿直线飞出叠加场区域,根据平衡条件有
同理,对带负电的粒子,判断知粒子受到的洛伦兹力竖直向下,电场力竖直向上,粒子沿直线飞出叠加场,根据平衡条件有
所以,仅增大粒子的速度,洛伦兹力增大,电场力不变,故粒子可能向上也可能向下运动,B错误;
C.仅将滑动变阻器的滑片P向下移动,两极板间的电势差增大,电场力增大,合力可能向上也可能向下,故粒子不一定向b板偏转,C错误;
D.仅增大粒子所带电荷量,电场力和洛伦兹力合力仍为零,故粒子一定仍沿水平方向穿过两极板,D正确。
故选D。
6.D
【详解】A.当超导体处在超导状态时,导体的电阻变为零,则不能测出两端电压,选项A错误;
B.由题意可知,当超导体置于外磁场中时,随着温度的降低,超导体表面能够产生一个无损耗的超导电流,这一电流产生的磁场,让磁感线被排斥到超导体之外,则处于超导状态时内部磁感应强度为零,选项B错误;
C.因为当低于某一温度后导体的电阻变为零,即同一较小的电压时电流可以变得很大,则根据三条曲线的变化趋势,可推断
选项C错误;
D.根据U-I图像可知,随着流经超导体的电流增大,电压与电流关系图像逐渐向T1的图像靠近,即导体的电压和电流趋近与正比关系,即导体的电阻趋近于某一固定值,即超导状态将被破坏,选项D正确。
故选D。
7.C
【详解】如图所示
A.设电子进入磁场回旋轨道半径为,根据洛伦兹力提供向心力
解得
若电子的初速度满足,则
应用平移圆可知电子均不能打到圆柱体表面上,不会发光,A错误;
B.若电子初速度满足,则
应用平移圆作图可得在圆柱形物体上之间的一段劣弧发光,B错误;
C.若电子初速度满足,则
应用平移圆作图可得在圆柱形物体上之间的一段优弧发光,C正确;
D.若电子初速度满足,则
应用平移圆作图可得圆柱形物体上所有部位都将会发光,D错误。
故选C。
8.B
【详解】甲乙两环在b点产生的磁感应强度大小相等,方向相同,而b点的磁感应强度大小为B2,因此两环在b点产生的磁感应强度均为,甲环在a点和b点产生的磁感应强度大小相等,方向相同,故甲环在a点产生的磁感应强度为而a点的磁感应强度大小为B1,因此乙环在a点产生的磁感应强度为。
故选B。
9.D
【详解】A.由左手定则可知,图中右侧为正电子运动轨迹,左侧为负电子运动轨迹,故A错误;
B.电子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得
解得
由图示电子运动轨迹可知,正电子轨迹半径小,则正电子速度小于负电子速度,故B错误;
C.正、负电子所受洛伦兹力方向时刻发生变化,所以正、负电子所受洛伦兹力不相同,故C错误;
D.电子在磁场中做圆周运动的周期
周期与速度大小、轨迹半径无关,则正、负电子在气泡室运动时,有能量损失,则动能减小、轨迹半径减小、周期不变,故D正确。
故选D。
10.B
【详解】A.根据左手定则可知,粒子a带正电,粒子b、c带负电,故A错误;
B.带电粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,根据牛顿第二定律有

解得
三个带电粒子的质量和电荷量都相等,故三个粒子在同一磁场中运动的周期相等,粒子c的轨迹对应的圆心角最大,所以粒子c在磁场中运动的时间最长,故B正确;
C.根据牛顿第二定律有
解得
粒子c的轨迹半径最小,速度最小,所以粒子c的加速度最小,故C错误;
D.根据可知,粒子c的动量最小,故D错误。
故选B。
11.B
【详解】A.根据左手定则可知,打在照相底片上的离子带正电,故A错误;
B.设打在点的离子质量为、电荷量为、轨道半径、打在点的离子质量为、电荷量为、轨道半径,在加速电场中,根据动能定理
在偏转磁场中,洛伦兹提供向心力
联立可得
、间的距离
可知可以通过减小磁感应强度来增大不同离子形成谱线之间的间隔,故B正确;
C.根据即
可得
故C错误;
D.根据可知标尺上各刻线对应比荷的值是非均匀的,故D错误。
故选B。
12.D
【详解】A.磁电式电流表的内部,在蹄形磁铁的两极间有一个可以绕轴转动的线圈,蹄形磁铁和铁芯间的磁场均匀辐向分布,当电流通过线圈时,线圈在安培力的作用下转动,故A正确,不符合题意;
B.改变线圈中电流的方向,线圈受力方向相反,指针会反向偏转,故B正确,不符合题意;
C.线圈匝数越多,受到的安培力合力越大,越容易转动,可以提高电流表的灵敏度;故C正确,不符合题意;
D.用铝框做骨架,当线圈在磁场中转动时,导致铝框的磁通量变化,从而产生感应电流,出现安培阻力,使其很快停止摆动。而塑料做骨架达不到此作用,故D错误,符合题意。
故选D。
13.D
【详解】A.由于洛仑兹力总不做功,则粒子的速率总保持不变,A错误;
B.由于带电粒子向地磁场两极运动的过程中,磁感应强度越来越大,根据周期公式
可知磁感应强度越大,周期越小,B错误;
C.由于带电粒子向地磁场两极运动的过程中,磁感应强度越来越大,根据半径公式
可知,磁感应强度越大,半径越小,C错误;
D.粒子的速度方向与磁感应强度方向不是相互垂直,与磁场方向平行的分速度不受洛仑兹力,该方向做匀速直线运动,则粒子螺旋运动的螺距为x=vT,周期变小了,粒子螺旋运动的螺距逐渐变小,D正确。
故选D。
14.C
【详解】试题分析:直线电流周围的磁场,离导线越远,磁感应强度越弱,故在线框在下落的过程中磁通量在减小,所以A错误;线框的上下两条边电流一样大,但所在位置磁感应强度不一样,故安培力不等大,所以合外力不为零,所以B错误;线框所在位置的磁感线方向垂直纸面向里,磁通量减小,根据楞次定律可得:感应电流的方向为顺时针方向,所以C正确;在下落的过程中,要克服安培力做功,故机械能逐渐减小,所以D错误.
考点:本题考查感应电流、安培力
15.(1)0.2m;(2)0.1m;(3)不同意,详见解析
【详解】(1)导线框下落h的过程中做自由落体运动
解得
(2)导线框穿过磁场过程中合力为零,则根据感应电动势和安培力的表达式得
,,
联立可得
(3)不同意该同学的说法。题中导线框释放后先做自由落体运动,当ab边进入磁场后,导线框所受重力与安培力大小相等,导线框做匀速直线运动,v-t图像为与t轴平行的直线。
若增大磁感应强度,导线框释放后仍然先做自由落体运动,当ab边进入磁场后,由于安培力的表达式为
所以导线框所受的安培力与重力大小不等,导线框不再做匀速直线运动,因此v-t图像不可能与t轴平行。
16.(1);(2)
【详解】(1)设金属棒速度大小为时,经历的时间为,通过金属棒的电流为,对金属棒有
设在极短时间间隔内流过金属棒的电荷量为,则

所以
联立解得
金属棒做初速度为零的匀加速运动,当金属棒下滑后的速度大小为
联立解得
(2)由可知当导体棒刚进入水平轨道时电容器极板上积累的电荷量为
此时金属棒的速度大小仍为
而感应电动势
小于电容器两极板间的电压,电容器放电,设再经过时间电容器放电结束,此时金属棒达到最终速度为,取水平向右为正方向,根据动量定理可得

联立解得
17.(1);(2);(3)
【详解】(1)由题意,根据法拉第电磁感应定律,可得线圈中产生感应电动势的最大值为
其中
代入相关数据求得
根据闭合电路欧姆定律,得通过电阻R的电流最大值
(2)线圈中产生感应电流的有效值为
得在线圈转动一周的过程中,整个电路产生的焦耳热
联立代入相关数据求得
(3)线圈由图示位置(即线圈平面与磁场方向垂直的位置)转过90°的过程中,通过电阻R的电荷量
代入相关已知数据求得
18.(1);(2);(3)
【详解】(1)导体棒以速度匀速向右运动时产生的感应电动势大小为
根据闭合电路欧姆定律可知通过导体棒的电流大小为
(2)根据能量守恒定律可知拉力做功的功率等于回路的消耗的电功率,即
(3)从撤去拉力到导体棒ab最终停止的过程,回路产生的总热量为
由于通过导体棒ab和电阻R的电流时刻相等,根据焦耳定律可推知在此过程中电阻R上产生的热量为
19.图乙、丙和丁中都能使线圈B中产生感应电流。
【详解】要在线圈B中产生感应电流,线圈A的电流要改变,从而使穿过B的磁通量变化;甲图中电流是恒定的,不可能激发出感应电流;图乙、丙和丁中的电流都是变化的,能使线圈B中产生感应电流。
20.(1);(2)①见解析,②见解析
【详解】(1)电子在加速电场中运动,由动能定理有
解得
(2)①设电子在偏转电场中飞行时间为t,加速度为a,由运动学公式和牛顿第二定律水平方向有
竖直方向有
其中
解得
设电子飞出偏转电场时的偏角为,竖直分速度为则有

根据几何关系有
解得
可知,h与比荷无关,测出h不能求出电子的比荷
(2)在两极板P和之间的区域加垂直纸面向里的匀强磁场,调节磁感应强度B的大小,使电子能够沿中心线方向通过两极板间区域,此时电子受到的静电力与洛伦兹力平衡,则有
解得

21.(1);(2);(3)见解析
【详解】(1)通电液体在磁场中受到的安培力
则导管截面上由磁场驱动力所形成的附加压强
(2)电路产生的热量
所以在时间内电流通过两电极板间液态金属所消耗的电能
(3)液态金属中的自由电荷一方面沿电流方向运动,另一方面沿极板方向运动,洛伦兹力f与二者合速度的方向垂直,而运动电荷受到的洛仑兹力在宏观上表现为安培力,则f的方向即为安培力的方向,可见安培力在推动液态金属沿导管运动过程是做功的。
设电荷沿电流方向的定向移动为v,对应受到的洛仑兹力为;沿极板方向的运动的速度为u,对应受到的洛仑兹力为,如图:

可见
即洛伦兹力f对运动电荷是不做功的。
22.(1);(2);(3)见解析
【详解】(1)因为粒子垂直于电场和磁场匀速通过P、Q两金属板间,则有
,又,
解得
(2)粒子进入金属板下方的磁场做匀速圆周运动,洛伦兹力提供向心力,有
解得
(3)洛伦兹力提供向心力有
解得
由于两粒子以相同的速度射入相同的磁场,则粒子a的圆周半径更小,所以粒子a 的比荷大。
23.(1),;(2)垂直纸面向外,;(3)不相同
【详解】(1)带电粒子在磁场区域内运动的轨迹如图所示
根据几何关系
轨迹的半径
(2)根据粒子的运动轨迹可知,在M点,所受洛伦兹力指向y轴负方向,根据左手定则可知,磁场方向垂直于纸面向外,粒子在磁场中做匀速圆周运动,有

(3)该粒子在电场中做类平抛运动。
粒子由N点射出磁场和电场时的速度方向与x轴夹角分别为、,则

所以
即该粒子由N点射出磁场和电场时的速度方向不相同。
24.(1);(2);(3),磁场方向为垂直纸面向外
【详解】(1)离子在加速电场中加速的过程中,根据动能定理有

解得

(2)离子在静电分析器中做匀速圆周运动,根据牛顿第二定律有

联立②③解得

(3)离子在磁分析器中做匀速圆周运动,根据牛顿第二定律有

联立②⑤式解得
由左手定则可知:磁场方向为垂直纸面向外。
25.(1)负电;(2)垂直纸面向外;(3)
【详解】(1)由于阴极射线在电场中向下偏转,因此阴极射线受电场力方向向下,又由于匀强电场方向向上,则电场力的方向与电场方向相反,所以阴极射线带负电。
(2)由于所加磁场使阴极射线受到向上的洛伦兹力,而与电场力平衡,由左手定则得磁场的方向垂直纸面向外。
(3)设此射线带电荷量为q,质量为m,当射线在D、G间做匀速直线运动时,有
qE=Bqv
当射线在D、G间的磁场中偏转时,如图所示:

同时又有
L=r·sin θ
解得
26.(1) c端电势高;(2);(3)①; ②提出的实例或设想合理即可。
【详解】(1)根据电场强度与电势差的关系可知
由左手定则可知电子向f端偏转,故f端电势低,c端电势高;
(2)由可得
当电场力与洛伦兹力相等时,有
所以

故可得

(3)①由于在时间t内,霍尔元件输出的脉冲数目为P,则有
故圆盘转速为

②电动自行车上的电动助力。(提出的实例或设想合理即可)
27.(1),;(2);(3)
【详解】(1)代表的是匀速运动的速度,也就是平衡时物体的运动速度,对汽车启动问题,有



对导体棒问题,有



(2)由动能定理可知

(3)由电磁感应定律

得,在导体棒从开始运动到速度达到最大过程中

由欧姆定律可知



由动量定理可知

计算可知
28.(1);(2) ;(3);(4)见解析
【详解】(1)设导体棒刚要滑动时,对导体棒,根据受力平衡可得
解得
(2)导体棒未滑动前,所受摩擦力为静摩擦力,大小等于安培力,随着导体棒速度增大,回路中感应电流变大,导体棒所受的安培力变大,导体棒做加速度逐渐减小的加速运动,电流变化率逐渐变小,则导体棒所受摩擦力随时间的变化率逐渐变小,导体棒滑动后,摩擦力为滑动摩擦力,恒定不变,导体棒所受摩擦力f大小随时间t变化的图像如图所示
(3)导体棒刚要滑动时,此时导体棒速度达到最大,则有
整个过程中对系统,由功能关系可得
联立解得
(4)当导体棒达到最大速度时,给一水平向右的瞬时速度(),此瞬间电流回路电流为
则有
可知导体棒做加速运动,导体棒做减速运动,根据
可知回路的电流增大,导体棒受到的安培力增大,当安培力等于滑动摩擦力时,导体棒的加速度为零,导体棒做匀速运动,综上所述可知,导体棒做初速度为,加速度逐渐减小的减速运动,当加速度减至0时,做匀速运动,由于
可知导体棒获得瞬时速度后,、组成的系统满足动量守恒,设最终导体棒的速度为,导体棒的速度为,对、系统,由动量守恒可得
当导体棒加速度减为0时,有
联立解得
试卷第1页,共3页
HYPERLINK "()
" ()

北京市2023年高考物理模拟题汇编-07磁场、电磁感应(有详解)

本文地址:https://www.qiuzhishu.com/zhishi/45756.html
版权声明:本文为原创文章,版权归 qiuzhishu 所有,欢迎分享本文,转载请保留出处!

评论已关闭!